Peripodial Cells Regulate Proliferation and Patterning of Drosophila Imaginal Discs

نویسندگان

  • Matthew C Gibson
  • Gerold Schubiger
چکیده

Cells employ a diverse array of signaling mechanisms to establish spatial patterns during development. Nowhere is this better understood than in Drosophila, where the limbs and eyes arise from discrete epithelial sacs called imaginal discs. Molecular-genetic analyses of pattern formation have generally treated discs as single epithelial sheets. Anatomically, however, discs comprise a columnar cell monolayer covered by a squamous epithelium known as the peripodial membrane. Here we demonstrate that during development, peripodial cells signal to disc columnar cells via microtubule-based apical extensions. Ablation and targeted gene misexpression experiments demonstrate that peripodial cell signaling contributes to growth control and pattern formation in the eye and wing primordia. These findings challenge the traditional view of discs as monolayers and provide foundational evidence for peripodial cell function in Drosophila appendage development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs.

Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms of cell proliferation, cell signaling m...

متن کامل

Lumenal transmission of decapentaplegic in Drosophila imaginal discs.

Drosophila imaginal discs are sac-like appendage primordia comprising apposed peripodial and columnar cell layers. Cell survival in disc columnar epithelia requires the secreted signal Decapentaplegic (DPP), which also acts as a gradient morphogen during pattern formation. The distribution mechanism by which secreted DPP mediates global cell survival and graded patterning is poorly understood. ...

متن کامل

Signaling interactions between squamous and columnar epithelia of the Drosophila wing disc.

Understanding the interactions between distinct epithelial cells would help us to understand the development of tissues. Drosophila imaginal discs, which are made up of two types of epithelial cells, provide good model systems for such studies. The disc proper or the columnar epithelial cells are apposed to a layer of squamous epithelial cells (the peripodial membrane). We have examined organiz...

متن کامل

Wg and Egfr signalling antagonise the development of the peripodial epithelium in Drosophila wing discs.

Imaginal discs contain a population of cells, known as peripodial epithelium, that differ morphologically and genetically from the rest of imaginal cells. The peripodial epithelium has a small contribution to the adult epidermis, though it is essential for the eversion of the discs during metamorphosis. The genetic mechanisms that control the identity and cellular morphology of the peripodial e...

متن کامل

Signaling Reaches to New Dimensions in Drosophila Imaginal Discs

Finding that peripodial cells in wing and eye imaginal discs are essential for the growth and patterning of the separate layer of disc cells now opens the study of interacting cell layers to the powerful developmental genetic techniques with which the Drosophila system is blessed. We can anticipate that future work will identify how such interactions contribute to patterning and how the mechani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2000